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Microbially derived biosensors can be engineered to 
detect a wide variety of molecules using diverse sens-
ing modules. These biosensors have numerous ap-
plications in human healthcare, including diagnostics, 
therapy and environmental monitoring (Figure 1).

EXPANDING THE SENSING 
REPERTOIRE OF WHOLE- CELL 
BIOSENSORS

Whole-cell bacterial biosensors (WCBs) have tremen-
dous potential in biomedical applications such as di-
agnostics and health monitoring, enabling biomarker 
detection in clinical samples or even within the body. 
Recently engineered WCBs have been optimized by 
applying new synthetic biology tools to sense mole-
cules within a clinically relevant range of concentrations 
(McNerney, et al., 2019a; Chang et al., 2021; Courbet 
et al., 2015; Watstein & Styczynski, 2018). Several labs 

also demonstrated the possibility of using bacteria for bi-
omarker detection in vivo (Daeffler et al., 2017; Gurbatri 
et al., 2024; Inda et al., 2019; Riglar et al., 2017).

WCBs also have a large potential for environmen-
tal monitoring of hazardous substances, such as 
heavy metals: mercury, arsenic or copper (Saltepe 
et al., 2022; Wan et al., 2019).

Nonetheless, the popularization of WCBs has been 
hindered by the lack of newly discovered small mole-
cule sensors. Experimental screening of natural mi-
crobial isolates to discover novel sensing modules 
has been demonstrated and represents a promising 
approach (Grazon et  al.,  2020). In addition, the del-
uge of sequencing data has generated a large source 
from which several new transcription factors (TFs) de-
tecting small molecules of interest can be discovered. 
Recently, searchable databases have been published 
(Delépine et al., 2016; d'Oelsnitz et al., 2024), as well 
as bioinformatic pipelines for identifying new small-
molecule responsive transcriptional regulators. These 
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sensors to withstand the challenging conditions found in biological samples. 
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for proteins. We anticipate that the AI-powered revolution in protein design 
will streamline the engineering of custom-made sensing modules and unlock 
the full potential of microbial biosensors.
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approaches take advantage of classical features asso-
ciated with ligand-responsive transcription regulators 
controlling metabolic cluster activity: (i) self-regulation 
of TF expression and (ii) localization of their gene in 
close proximity to the metabolic cluster they regulate 
(Hanko et  al.,  2020, 2023). Software tools to identify 
TF binding sites are also extremely useful for finding 
natural promoters or building hybrid ones containing TF 
operators. The Snowprint pipeline has enabled the dis-
covery of previously uncharacterized regulators repur-
posed for sensing diverse ligands in Escherichia coli (E. 
coli), including tetrahydropapaverine, geraniol, olive-
tolic acid and ursodiol (d'Oelsnitz et al., 2024). Recent 
advancements in deep learning algorithms have also 
contributed to the development of accurate prediction 
tools such as DeepTFactor, PredicTF and DeepReg 
(Kim et  al.,  2021; Ledesma-Dominguez et  al.,  2024; 
Oliveira Monteiro et al., 2022).

However, using natural TFs requires repurpos-
ing existing promoters that sometimes do not work in 
different species, or designing and screening hybrid 
promoters containing operator sequences (d'Oelsnitz 
et  al.,  2024). Another approach is to decouple sens-
ing from signalling by engineering modular receptors 
in which the sensing domain can be plugged into a re-
usable actuation domain. We recently developed such 
modular receptors in E. coli based on the DNA binding 
domain of CadC, a transmembrane one-component 
system activated by dimerization (Jung et  al.,  2018). 

Synthetic receptors responding to caffeine were built 
using CadC as a signalling module and a VHH recog-
nizing this molecule as ligand binding domain (LBD) 
(Chang et al., 2018). Substituting the LBD with sensing 
domains from Vibrio cholerae enabled the detection of 
bile salts, a biomarker of liver dysfunction, in the serum 
of patients that had undergone liver transplant (Chang 
et  al.,  2021). Similar strategies have been success-
fully applied to two-component systems (TCS), and 
further extended to the discovery of ligands activating 
previously orphan TCS (Schmidl et  al.,  2019; Wang 
et al., 2021; Zhao et al., 2024). The intrinsic modular-
ity of these approaches facilitates the expansion of the 
sensing repertoire of WCBs since they do not require a 
complete redesign of the biosensing system.

A recent challenge in the field of WCBs has been 
to unlock new sensing modalities in living bacteria. 
Biomarkers of interest for medical or environmental 
diagnostics include small molecules, but also nucleic 
acids and proteins. Yet, over several decades, WCBs 
were limited to the detection of small molecules that 
could cross cellular membranes. For extracellular 
DNA detection, recent approaches have harnessed 
naturally competent bacteria. Notably, Bacillus sub-
tilis was engineered to detect extracellular DNA from 
bacterial pathogens using homologous recombination 
linked to growth and fluorescence (Cheng et al., 2023; 
Cooper et  al.,  2023; Nou & Voigt,  2024). B. subti-
lis was also engineered to detect human sequences 

F I G U R E  1   Bacterial-based biosensors have been engineered to detect a broad range of molecules through the use of different sensing 
modules. These modules are generally embedded into a specific chassis that is the most suitable for one particular application. Recently, 
efforts have been put towards expanding the space of detectable ligands via different approaches including mining of transcription factors, 
the addition of metabolic transducers to the genetic circuit, toehold switches for nucleic acid detection, aptamers-based riboswitches and 
de novo designed sensor proteins. CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; SELEX, Systematic Evolution of 
Ligands by Exponential Enrichment; TF, transcription factor; TX-TL, transcription translation.
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with particular single-nucleotide polymorphisms 
(SNPs) using Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) interference (Cheng 
et al., 2023; Cooper et al., 2023; Nou & Voigt, 2024). 
The same principle was extended to in  vivo applica-
tions by Cooper et  al. to detect tumour DNA using 
Acinetobacter baylyi, a highly competent bacteria, that 
uptakes cancer DNA which recombines with the bac-
terial sensor DNA to express an antibiotic resistance 
gene (Cheng et  al.,  2023; Cooper et  al.,  2023; Nou 
& Voigt, 2024). The ability to detect specific DNA se-
quences in the bacterial environment both in vitro and 
in  vivo offers tremendous possibilities for diagnostics 
and therapeutic applications.

Finally, extracellular protein detection remains a 
highly challenging task for bacteria biosensors, as 
proteins cannot easily enter the cell to interact with 
intracellular sensing elements. One way to circum-
vent this challenge was proposed by Kylilis et al. that 
used bacteria displaying nanobodies at their surface 
and which aggregate in the presence of the target 
protein (Kylilis et al., 2019), recapitulating well-known 
agglutination assays. The authors demonstrated the 
detection of fibrinogen, a biomarker of cardiovascular 
diseases and inflammation, in human plasma, with a 
detection limit as low as 10 pM. This agglutination sys-
tem doesn't require advanced equipment, an import-
ant feature for point-of-care testing. Nevertheless, 
to date, no system linking the detection of extracel-
lular proteins to the activation of gene expression 
has been reported. This is a critical requirement for 
reporter-based assays and for in  vivo biomarker-
triggered therapeutic production. Engineering such 
signal transduction pathways remains a frontier in the 
field. Unsolved challenges include engineering mem-
brane proteins leading to an actuation signal inside 
the cells upon protein binding (e.g. allosteric change 
or dimerization), managing the tick cell wall in gram-
positives or signal transduction across the periplasm 
for gram-negative. Given the importance of protein 
biomarkers, we expect this area to be the focus of 
intense development in the near future.

UNLEASHING THE POTENTIAL OF 
CELL- FREE BIOSENSORS

Cell-free transcription-translation (TX-TL) systems have 
undergone remarkable advancements in recent years, 
enabling the execution of complex genetic circuits 
in vitro (Garenne et al., 2021). Cell-free systems (CFS) 
offer several advantages over traditional cell-based as-
says. They allow the detection of molecules that do not 
cross cellular membranes and are less susceptible to 
compounds toxic to living cells. Their composition can 
be easily tailored to suit specific needs, they are inex-
pensive to produce, and can be deployed in the field. 

Importantly, they circumvent regulatory concerns as-
sociated with genetically modified organisms (GMOs), 
simplifying their implementation. Cell-free systems thus 
hold great promise in delivering robust and affordable 
point-of-care diagnostics (Voyvodic & Bonnet,  2020). 
Since the COVID-19 pandemic, significant efforts have 
been put into the development of sequence-specific nu-
cleic acid detection systems. Amalfitano and colleagues 
used a toehold switch to detect SARS-CoV-2 RNA iso-
lated from patient nasopharyngeal swabs, and embed-
ded their biosensor into a glucose meter, to provide a 
user-friendly interface (Amalfitano et al., 2021). Toehold 
switches were also harnessed to develop paper-based 
tests to detect Zika and Chikungunya viruses in human 
serum (Karlikow et  al.,  2022). Other nucleic acid de-
tection strategies have exploited CRISPR systems, in 
particular Cas12a and Cas13a, offering sensitivities 
down to attomolar concentrations of target sequences 
(Broughton et  al.,  2020; Gootenberg et  al.,  2017; 
Karlikow et al., 2023). Nguyen and co-workers went a 
step further and integrated their CRISPR-based sensor 
into a wearable mask, enabling non-invasive SARS-
CoV-2 detection within 90 min (Nguyen et al., 2021).

In addition to nucleic acids, CF-based diagnostics 
have been applied to diverse molecules. Protein-binding 
riboswitches were leveraged for the detection of human 
monomeric C-reactive protein, human interleukin-32γ 
and phage MS2 coat protein (Vezeau et al., 2023), as 
well as antibodies spiked in human serum samples 
(Patino Diaz et  al.,  2022). Transcription factor-based 
diagnostics were also developed for 3-oxo-C12-HSL, 
a Pseudomonas aeruginosa biomarker in sputum 
samples from cystic fibrosis (Wen et  al.,  2017), de-
oxycholic acid in serum and faeces samples (Beabout 
et  al.,  2023), and to monitor zinc levels in blood 
(McNerney, et al., 2019b).

Although industrial activities represent an essen-
tial part of the modern world's economy, they account 
for the emission of a significant amount of atmo-
spheric, soil and water pollutants, often threatening 
entire ecosystems. Providing rapid, low-cost, and 
field-deployable methods to monitor pollutant concen-
trations in environmental and food samples is one of 
the key promises of cell-free synthetic biology. Notably, 
Jung and colleagues developed the ROSALIND (RNA 
Output Sensors Activated by Ligand Induction) plat-
form and demonstrated the detection of various water 
contaminants including antibiotics, heavy metals, as 
well as other classes of molecules used as additives 
or disinfectants (Jung et  al.,  2020, 2022). To ensure 
the compatibility of their approach with the detection 
of protein synthesis inhibitors, the authors used an out-
put that only required transcription—a fluorescent RNA 
aptamer. Other examples of CF biosensors for water 
contaminants monitoring include fluoride (Thavarajah 
et al., 2020), atrazine (Silverman et al., 2020), mercury 
and gamma-hydroxybutyrate (Gräwe et  al.,  2019). A 
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key feature of cell-free-based sensors is their ability 
to sustain freeze-drying, which facilitates their storage 
and distribution to remote areas.

IMPROVING MICROBIAL 
BIOSENSOR OPERATION IN 
COMPLEX MATRICES

One of the main challenges for real-world usage of micro-
bial biosensors is ensuring their performance in complex 
environments. Clinical and environmental samples can 
present strong matrix effects affecting sensor activity, 
often not evaluated during sensor development. Several 
paths are possible to optimize whole-cell and cell-free 
biosensor operation in complex matrices. Sample pre-
processing, including dilution, filtration, treatment with 
RNAse inhibitors, heat inactivation, together with encap-
sulation strategies, is crucial for ensuring functionality in 
clinical samples (Beabout et al., 2023; Boyd et al., 2023; 
Courbet et al., 2015; Voyvodic et al., 2022; Watstein & 
Styczynski, 2018; Zúñiga et al., 2022). New output mod-
ules such as pigments (McNerney, et al., 2019a) or elec-
trical current produced by engineered electron transport 
chains have also been used (Atkinson et  al.,  2022). 
Operation in complex matrices can also be optimized by 
applying additional engineering cycles to improve sen-
sor properties such as limit-of-detection, signal output 
strength and fold-change. For instance, directed evo-
lution of the periplasmic domain of the TcpP receptor 
in E. coli enabled robust performance for endogenous 
bile acid detection in serum and faecal samples (Chang 
et  al.,  2021; Zúñiga et  al.,  2022). Promoter engineer-
ing allowed bypassing interference from non-target 
molecules and improved biosensor dynamic range for 
the detection of endogenous thiosulphate, tetrathionate 
(Daeffler et al., 2017) or L-lactate in 3D tumour sphe-
roids (Zúñiga et al., 2021).

In vivo monitoring of molecules also requires a stable 
performance over time. This was achieved via chromo-
somal integration for a tetrathionate-responsive mem-
ory device in E. coli (Riglar et al.,  2017). The sensor 
device retains the memory of tetrathionate exposure in 
the gut, analysed by faecal testing, and detected tetra-
thionate in both infection-induced and genetic mouse 
models of inflammation over 6 months. Another ap-
proach is to couple microbial biosensors with electronic 
devices as in the work of Mimee and colleagues (Mimee 
et al., 2018) that combined engineered sensor bacteria 
with ultra-low-power microelectronics to enable in situ 
detection of gastrointestinal bleeding in pigs.

Operation in complex environments is a critical issue, 
and the sensor engineering community should develop 
standards and good practices enabling us to move 
away from idealized systems and fully translate new 
developments into real-world applications (Richards & 
deMello, 2023).

KEY TECHNOLOGICAL 
CHALLENGE: ENGINEERING 
OF NOVEL LIGAND BINDING 
CAPABILITIES

One of the primary hurdles facing the development of 
new biosensors is the need to widen the scope of de-
tectable ligands. The diversity of detectable molecules 
is primarily constrained by the availability of existing 
sensing modules such as bacterial transcription factors 
or riboswitches. To circumvent this limitation, some ap-
proaches have employed metabolic transducers that 
convert the target molecule into a different molecule 
such as benzoic acid or H2O2, which can be detected 
by available transcription factors (Libis et  al.,  2016; 
Soudier et  al.,  2022; Voyvodic et  al.,  2019). Rational 
engineering and directed evolution methods have also 
been applied to switch the specificity of allosteric tran-
scription factors to detect new aromatic compounds 
such as resorcinol and protocatechuic acid, as well 
as alkaloids (F M Machado et  al.,  2019; d'Oelsnitz 
et al., 2022; Nasr et al., 2023).

Unlike transcription factors, the generation of new 
riboswitches responding to a ligand of interest can be 
achieved through the screening of synthetic libraries 
using Systematic Evolution of Ligands by Exponential 
Enrichment (SELEX) (Tuerk & Gold, 1990), often paired 
with an in vivo selection step. Consequently, artificial ri-
boswitches sensitive to histamine, naringenin and capro-
lactam could be selected and embedded into bacterial 
chassis (Dwidar et  al.,  2019; Jang et  al.,  2017, 2019). 
Nonetheless, the development of novel riboswitches 
remains limited as they not only require binding of the 
ligand but also conformational RNA switching. Since 
SELEX only focuses on finding high-affinity binders, 
Boussebayle and colleagues developed Capture-SELEX 
that integrates both high-affinity binding and conforma-
tional switching (Boussebayle et al., 2019). They demon-
strated the functionality of their screening method by 
selecting a conformation-switching paromomycin ap-
tamer, which was subsequently engineered into a ribo-
switch with a KD of 20 nM, operating effectively in vivo. 
Another approach, de novo rapid in  vitro evolution of 
RNA biosensors (DRIVER) was proposed by Townshend 
and colleagues (Townshend et  al.,  2021). The authors 
used aptamer-coupled ribozyme libraries and an NGS-
based assay (CleaveSeq) to identify ligand-responsive 
riboswitches in a fully automated manner. Using their 
method, they generated several biosensors operating 
in living cells. Importantly, both Capture-SELEX and 
DRIVER enable the selection of RNA switches against 
soluble ligands without the need for their chemical modi-
fications and immobilization.

Going beyond these approaches, the recent rev-
olutions in protein structure prediction (Abramson 
et al., 2024; Jumper et al., 2021) and de novo protein 
design (Watson et al., 2023) have opened the door to 
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completely synthetic protein sensors. For example, 
Langan and colleagues designed bioactive protein 
switches called LOCKR, in which a ‘key’ peptide can 
interact with a ‘cage’ protein inducing a large confor-
mational change that unlocks a defined protein func-
tion (Langan et  al.,  2019). Design principles from the 
LOCKR architecture were then applied to develop the 
LucCage system, in which a luminescent signal is pro-
duced upon binding of the ligand of interest (Quijano-
Rubio et  al.,  2021). LOCKR-derived biosensors have 
since been harnessed to detect a variety of targets such 
as SARS-CoV-2, HER2, BCL-2, cardiac troponin-I, 
parathyroid hormone (PTH), glucagon and Ras activity 
(Quijano-Rubio et al., 2021; Vázquez Torres et al., 2024; 
Zhang et  al.,  2024). While de novo-designed protein 
sensors have been primarily applied to protein sensing, 
emerging tools such as RoseTTAFold All-Atom hold im-
mense promise for broadening the range of detectable 
chemical entities (Krishna et al., 2024). Integrating these 
de novo sensing domains into bacterial or cell-free plat-
forms promises to revolutionize and streamline micro-
bial biosensors design. One can also envision complete 
de novo signal transduction cascades liberated from 
the constraint of evolutionary history to obtain insulated 
sensing devices exquisitely tailored to specific needs. 
The next generation of microbial biosensors, supported 
by these groundbreaking technologies, will fully realize 
their potential to deliver critically needed technologies 
for healthcare and the environment.
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